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A Lower Bound for the Time to Assure Interactive Consistency 

Michael J. Fischer 
Nancy A. Lynch 

1. Introduction 

The problem of "assuring interactive consistency" is defined in [PSL]. It is assumed that there are n 
isolated processors, of which at most m are faulty. The processors can communicate by means of 
two-party messages, using a medium which is reliable and of negligible delay. The sender of a 
message is always identifiable by the receiver. Each processor p has a private value a(p). The 
problem is to devise an algorithm that will allow each processor p to compute a value for each 
processor r, such that (a) if p ?nd r are nonfaulty, then p computes r's private value a(r), and (b) all the 
nonfaulty processors compute the same value for each processor r. 

It is shown in [PSL] that if n < 3m + 1, then there is no algorithm which assures interactive 
consistency. On the other hand, if n > 3m + 1, then an algorithm does exist. The algorithm 
presented in [PSL] uses m + 1 rounds of communication, and thus can be said to require "time" m + 
1. An obvious question is whether fewer rounds of communication suffice to solve the problem. 

In this paper, we answer this question in the negative. That is, we show that any algorithm whicn 
assures interactive consistency in the presence of m faulty processors requires at least m + 1 rounds 
of communication. 

The remainder of the paper is organized as follows. Section 2 contains motivation for our formal 
model and problem statement, Section 3 contains the notation and definitions. Section 4 contains a 
reduction of our set of allowable algorithms to a more restrictive set of "uniform" algorithms. Section 
5 contains a restatement of the relevant results of [PSL]. Section 6 contains our main lower bound 
result. Section 7 contains an important open question. 

The reader is urged to read [LSP] and [L] for discussion of the practical importance of assuring 
interactive consistency, and [PSL] for additional results not immediately relevant to this paper. Other 
related papers are [DW] and [DJ. 

2. Motivation for the Definitions 

A general model for solving the interactive consistency problem might consist of n processors 
(automata) communicating by means of n oneway "communication channels". Each channel can 
be formalized as a shared variable which can be modified by exactly one processor and read by 
exactly one processor. (Such a formalization can be carried out, for example, within the model of 
[LF].) The variables which each processor can modify are called its "out channels", while the 
variables it can read are called its "in-channels". 

Each processor p starts with an arbitrary private value <r(p). Execution of the system proceeds in 
synchronous "rounds"; at each round, the following two steps occur: (1) First, each nonfaulty 
processor writes values ("sends messages") derived from its state into all of its out channels, while 
each faulty processor writes arbitrary values into all of its out channels.  (2) Second, each processor 
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reads the values from all of its inchannels. After some specified number, k, of rounds, each 
processor p outputs a vector of valu« 3, one for each processor r. These outputs are required to 
satisfy conditions (a) and (b) stated in the Introduction. 

If the only complexity measure of interest is the number of rounds, then we can assume without loss 
of generality that the messages sent by each nonfaulty processor p on the first round are all exactly 
equal to its private value a(p), and that the messages sent by each nonfaulty processor on 
subsequent rounds are all exactly the set of messages received from all proc -?ssors on the previous 
round. That is, if there is any correct k-round algorithm, then there is a correct k-round algorithm in 
which exactly the messages described above are sent. This is so because (i) it is clear that the given 
information is the maximum nontrivial information which could be sent, (ii) it does not hurt to send 
nonfaulty processors the maximum information, since they can derive any needed information from 
the given maximum information, and (iii) it does not hurt to send faulty processors the maximum 
information, since it is assumed that the faulty processors can send arbitrary messages in any case 
i.e. they could "guess" any missing information. 

In such a maximum-information algorithm, the output vector of each processor p is simply a function 
of the set of all values received by p at all rounds of the computation. (So far. this reduction is as in 
[PSL] .) In addition, if p is nonfaulty, then the set of messages received by p at all rounds of the 
computation is determined by the set of messages received by p at the last round (since p sends 
messages to itself at each round containing the information p received at earlier rounds). Since the 
correctness conditions involve only the outputs of nonfaulty processors, it suffices to formalize the 
output of p as a function of the set of messages received by p at the last round of communication 
only. 

3. Notation and Definitions 

If A is any alphabet, i, j e N U {0}, i > j, we use A'' to denote the set of strings of symbols in A, of 
length at least i and at most j. 

Let P be the set of processors, |P| = n, and let m be an upper bound on the number of faulty 
processors. Fix V to be the domain of values on which the processors wish to reach agreement. 
Assume {0,1} C V. 

For any kt NU {0}, let 1lk denote the set of mappings from Pk into V. (An element of It11 is intended 
to represent a set of messages which a processor could receive at the last round of a computation.) 

A k-round algorithm A (for P) is a set {F   : p t P} of functions, where F .: Ii   X P -• V. A is uniform if 

Fp = Fq for all p, q c P. 

A k-round scenario (for P with m faults) is a mapping o: P 1 k + 1 -» V, such that |T | > n - m, where T 

(the set of truthtellers)  =  {q e P : a(wqp)  =  o(wq) for all p e P and all w r pok 1}    Intuitively, 

0(p1p2>..p() is intended to represent the value in V which p.. told p( that p( . told p|   that.   that p( told 

P2 was Pj's private value; as a special case, <r(p) represents p's piivate value    (Note that this 

definition reverses the direction of the string arguments in the [PSL] definition.) 

l.et I. (the set of tors) denote P-T    if«i:P a o 
1 k • 1 V and p i P, then p's view of a is the nap a   < 11* 
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(liven by a (w) = a(wp).  Let f    = {a   : a is a k-round scenario (for P witl> m faults) and p t T }. 

That is, Xk is the set of possible views for p when p is a truthteller in a k round scenario. 

Let A = {F   : p c P} be a k round algorithm.  Then A assures interactive consistency (for P with m 

faults) provided for each k-round scenario a (for P with m faults), the following two conditions hold. 

(a) {Validity) Fp(ap'r) = o(r) for a" p-r e T„' 

(b) (Agreement) 'V'Vr) = 'V'V r' 'or a" p' q £ To ancl a" r e ^' 

4. Reduction to Uniform Algorithms 

In this section, we show that it suffices to restrict attention to uniform algorithms. 

Lemma 1: Assume n > 2m + 1. Let A = {F : p e P} be a k round algorithm which 

assures interactive consistency. Then F (a,r) = F (a,r) for all p, q, r e P and all a e fk D 

X\ P 

q 

Proof: Let p, q, r c P, a e fk D Xk. Then there are k-round scenarios a and T such that p 

£ T , q £ T , and a = a   =r.LetS£T   ("IT. (Such an s is guaranteed to exist because 
o t p q a f 

n>2m + 1.) 

Modify only the last round of o and T to obtain new k-round scenarios a' and T', as follows. 
Let o'(ws) = o(wp) for all w £ Pk, and let CT'(X) = a(x) otherwise. Similarly, let T'(WS) = 

r(vvq) for all w £ Pk, and let T'(X) = T(X) otherwise. It is easy to check that a and T' are 
scenarios, that {p,s} CT „ {q,s} C T ,, and that a = a'   = a'   = T'   = r'. Thus, F (o,r) \.i-'  J —    a ' i-i»  J —    T> p s q s 'pv'' 

= Fptff'p.r). = ^(f's-1") by the agreement property, = Ft(T*a/), = F
q(T'q,r) by the 

agreement property, = FJct.r). 

n 

Theorem 1: Assume n> 2m + 1. If there is a k round algorithm which assures interactive 

consistency, then there is a k-round uniform algorithm which assures interactive consistency. 

Proof: Let A = {F   : p £ P} be a k-round algorithm which assures interactive consistency. 

Fp(«,r)if a t 

0 otherwise. 

P 
Define F: IT X P -• V as follows. Let F (a,r) = F («,r)if a i X k 

Lemma 1 shows that this definition is consistent. Then the algorithm which uses F for all 

processors is a k round algorithm which assures interactive consistency. 

5. Earlier Results 

hi this section, we state the two relevant results from fPSL]. 

Theorem?: Assume n < 3 m + 1. Then there is no algorithm which assures interactive 
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consistency. 

Proof:  [PSL], 

Theorem 3: Assumen>3m + 1. Then there is an m + 1-round uniform algorithm which 

assures interactive consistency. 

Proof: [PSL]. 

6. Lower Bound 

In this section, we present our main result. 

Theorem 4: If k < m, then there is no k-round algorithm which assures interactive 
consistency. 

Proof: The theorem is easily seen to be true if m = 0, so assume that m > 1. Assume that 
the theorem is false: that k < m and there is a k-round algorithm A = {F   : p £ P} which 

assures interactive consistency. By Theorem 1, we can assume that A is uniform, i.e. that 
F   = F for all p £ P. By Theorem 2, we know that n > 3 m + 1. p — 

Define a relation ~ on tUk as follows. Let a - ß provided there exist a k-round scenario a 
and p, q £ T^ for which a = a   and ß = a . Let = be the smallest equivalence relation 

containing ~. By the agreement property, we have: 

Facf 1: F(a,r) = F{ß,r) for all a, ß e °U.k with a = ß, and all r £ P. 

For each v e V, w E Pk, let y (w) = v. By the validity property, we have: 

Fact 2: F(y ,r) = v for all r E P and all v £ V. 

Define an arbitrary total order on P, let N = n\ and let I: Pk—»{1 N} be a bijection 
corresponding   to   lexicographic   order   on   the   strings   in   Pk.       That   is,   if   v, 

WE Pk, 0 < i < k-1, p, q £ P,  v = rr...rpx, w = rr..r. qyand p< q, then l(v)< l(w). 

For 1 <a < N + 1. define a&:P
k^ {0, 1} by 

aa(w) =      Oifl(w)<a, 

1 otherwise. 

Note that a1 = Y,andaN+1 = yQ. 

We claim that afl - aa+1 for all a,1<a < N. If so, then y1 = «( ~ a„ ~...~ a . = y so 

that y, • y0. Fix any r £ P. By Fact 1, F(yrr) = F(y0,r). However, by Fact 2, F(yrr) = 1 

and F(y0,r) = 0. This provides the needed contradiction. 

It remains to prove II ie claim.  Fix a, 1<a<N, and choose r ,...,r .so that l(r ...r.)- a.  By 
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assumption, n-k > nm > 3m + 1-m  =  2m+ 1 > 2, so that there exist two distinct 
participants, rk+   and rR + 2, in P {r rk}.  Assume without loss of generality that rk +. > 
rk + 2 in tne total orc)er on p- We construct a kround scenario a with L   C {^ rk}, in 
which a.      = a. and a        = a. = a. and a. 

rk*1       a rk + 2 
a+V 

Leta(w) =    Oif w = r1...r.px, whereO <i <k, pe P, x£P0:kl, andp<rj + 1, 

1 otherwise. 

We show that a is a kround scenario, with L  C {rr...,rk}. Let q e P - {r1 rk}, p e Pand 
,0:k-1 

VJ eP       • We must show that <r(wq) = CT(wqp). Now, |wq| < k, so thatwq is of the form 
r ...fjSx, where i < k-1, se P, and s* r.    . Then a(wq) = Oifs<rj + 1, 

1 otherwise, 

= a(rr..r.sxp) = a(wqp). 

Next, we show that a = aa. Let w e P . Then aa (w) = 0 if I (w) < a, 

1 otherwise, 

= a(wrk + 1) = <r       (w). 
k+ 1 

Finally, we show that a • a„  «. Let w e Pk.Then a,   . (w) =   0 if I (w) < a, 
rk+2       a+1 a+1 _ 

1 otherwise, 

= a(wrk + 2) since rk + 2<rk + 1, 

= a       (w). 
rk + 2 

Note that Theorem 3 (of the previous section) provides an upper bound on both the number of 
processors and the number of rounds. Thus, it demonstrates that both the lower bounds of Theorems 
2 and 4 are tight. 

7. Open Question 

Tho most important question remaining involves the amount of communication and storage needed to 
assure interactive consistency. The algorithm in [PSL], which uses the minimum possible number of 
rounds, involves sending enormous amounts of information - approximately nm + 2 values in v. We 
would like to know if this amount can be reduced, say to an amount polynomial in n and m (using 
either the minimum number, m + 1, of rounds, or perhaps a larger number of rounds). An algorithm 
using such a reduced amo it of communication might be of considerably more practical value than 
the current algorithm. 

 "'-* 
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6(r), then p computes r's private value d(r), and (b) all the nonfaulty processors 
compute the same value for each processor r. 

It is shown in [PSL] that if n < 3m + 1, then there is no algorithm which 
assures interactive consistency.  On the other hand, if n > 3m + 1, then an 
algorithm does exist.  The algorithm presented in [PSL] uses m + 1 rounds of 
communication, and thus can be said to require "time" m + 1.  An obvious 
question is whether fewer rounds of communication suffice to solve the problem. 

In this paper, we answer this question in the negative.  That is, we show 
that any algorithm which assures interactive consistency in the presence of m 
faulty processors requires at least m + 1 rounds of communication. 
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